Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Among (i) displaystyle lim x arrow ∞ sec -1((x/ sin x)) and (ii) displaystyle lim x arrow ∞ sec -1(( sin x/x)),
Q. Among (i)
x
→
∞
lim
sec
−
1
(
sin
x
x
)
and (ii)
x
→
∞
lim
sec
−
1
(
x
sin
x
)
,
75
152
Limits and Derivatives
Report Error
A
(i) exists, (ii) does not exist
28%
B
(i) does not exist, (ii) exists
20%
C
Both (i) and (ii) exist
38%
D
Neither (i) nor (ii) exists
14%
Solution:
(i)
x
→
∞
lim
sec
−
1
(
sin
x
x
)
=
sec
−
1
(
sin
∞
∞
)
=
sec
−
1
(
any value between
−
1
to
1
∞
)
=
sec
−
1
(
±
∞
)
=
2
π
(ii)
x
→
∞
lim
sec
−
1
(
x
sin
x
)
=
sec
−
1
(
∞
sin
∞
)
=
sec
−
1
(
∞
any value between
−
1
to
1
)
=
sec
−
1
0
=
not defined
Hence, (i) exists but (ii) does not exist.