y=x+sinx
Let at P(x1,y1) tangent be parallel to x -axis.
So (dxdy)(x1,y1)=0 ⇒2x1+sinx11+cosx1=0 ⇒1+cosx1=0 ⇒cosx1=−1⇒x1=π⇒sinx1=0…(i)
Since (x1,y1) lies on given curve, y12=x1+sinx1 ⇒y12=x1 (sinx1=0 from (i)) ∴ Locus of (x1,y1) is y2=x
which is a parabola.