Let the point z(x,y),z1(x1,y1) and z2(x2,y2). ∴z−z1=x+iy−x1−iy1 =x−x1+i(y−y1)
and z−z2=x+iy−x2−iy2 =x−x2+i(y−y2)
Now, z−z2z−z1 =[(x−x2)+i(y−y2)][(x−x1)+i(y−y1)]×[(x−x2)−i(y−y2)][(x−x2)−i(y−y2)] (x−x1)(x−x2)+(y−y1)(y−y2)+ =(x−x2)2+(y−y2)2i[(x−x2)(y−y1)−(x−x1)(y−y2)]
=Arg (z−z2z−z1)=0 or π ⇒[[(x−x1)(x−x2)+(y−y1)(y−y2)][(x−x2)(y−y1)]−[(x−x1)(y−y2)]]=0 ⇒(x−x2)(y−y1)=(x−x1)(y−y2) ⇒xy−xy1−x2y+x2y1=xy−xy2−x1y+x1y2 ⇒x(y2−y1)+y(x1−x2)+(x2y1−x1y2)=0
It represents a straight line passing through the points A of B