Q.
A variable line L=0 is drawn through O(0,0) to meet the lines L1:x+2y−3=0 and L2:x+2y+4=0 at points M and N respectively. A point P is taken on L=0 such that OP21=OM21+ON21. Locus of P is
Let the parametric equation of the variable line is cosθx−0=sinθy−0=r ⇒x=rcosθ;y=rsinθ ∴ putting (x=rcosθ;y=rsinθ) in L1=0, we get OM1=3(cosθ+2sinθ)...(i) ∥ ly putting the general point in L2=0, we get ON1=4−(cosθ+2sinθ)...(ii)
Let P=(h,k) and OP=r ⇒rcosθ=h,rsinθ=k ∴OP21=OM21=ON21 ⇒r21=9(cosθ+2sinθ)2+16(cosθ+2sinθ)2 ⇒144=16(rcosθ+2rsinθ)2+9(rcosθ+2rsinθ)2 ⇒144=16(h+2k)2+9(h+2k)2 ∴ Locus of P(h,k) is (x+2y)2=25144