Q.
A variable chord of a hyperbola 4x2−8y2=1 subtends a right angle at the centre of hyperbola. If the chord of hyperbola touches a fixed circle of radius R which is concentric with hyperbola then find R2
Let variable chord be xcosα+ysinα=p
homogenizing the hyperbola 4x2−8y2=p2(xcosα+ysinα)2
Now, coefficient of x2+ coefficient of y2=0 p2cos2α−41+p2sin2α+81=0<br/>p21=81⇒p2=8 ∴ required R2=8