Given, A=⎣⎡14b91429−1−32b0123<br/><br/>⎦⎤
For rank to be 3, there must exist 3 non zero row.
Now, applying R2→R2−4R1;R3→R3−2R1 =⎣⎡10b−291009−114b0123<br/><br/>⎦⎤
Applying R4→R4−9R1 =⎣⎡10b−201000−114b+90123<br/><br/>⎦⎤
Again, applying R4→R4−3R2 A=⎣⎡10b−201000−114b+60120<br/><br/>⎦⎤
If rank =3, then
Last row must have all elements 0 ∴b+6=0 ⇒b=−6