Let O be the origin. Then OA=3i^−j^+2k^, OB=i^−j^−3k^ and OC=4i^−3j^+k^ ∴AB=OB−OA=(i^−j^−3k^)−(3i^−j^+2k^)=−2i^+0j^−5k^ AC=OC−OA=(4i^−3j^+k^)−(3i^−j^+2k^)=i^−2j^−k^
Now, AB×AC=∣∣<br/><br/>i^−21j^0−2k^−5−1∣∣ =(0−10)i^−(2+5)j^+(4−0)k^=−10i^−7j^+4k^ ⇒∣AB×AC∣=(−10)2+(−7)2+(4)2=100+49+16=165
A unit vector perpendicular to the plane of ΔABC is perpendicular to both AB and AC. Hence, a unit vector perpendicular, to the plane of ΔABC=∣AB×AC∣AB×AC=165−10i^−7j^+4k^=−1651(10i^+7j^−4k^)