Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A unit vector d is equally inclined at an angle α with the vectors a = cos θ . hat i + sin θ . hat j , b =- sin θ . hat i + cos θ . hat j and c = hat k . Then, α is equal to
Q. A unit vector
d
is equally inclined at an angle
α
with the vectors
a
=
cos
θ
.
i
^
+
sin
θ
.
j
^
,
b
=
−
sin
θ
.
i
^
+
cos
θ
.
j
^
and
c
=
k
^
. Then,
α
is equal to
412
143
Vector Algebra
Report Error
A
cos
−
1
2
1
B
cos
−
1
3
1
C
cos
−
1
3
1
D
2
π
Solution:
Let
d
⋅
a
=
d
⋅
b
=
d
⋅
c
=
cos
α
⇒
d
⋅
(
a
−
k
^
)
=
0
and
d
⋅
(
b
−
k
^
)
=
0
⇒
d
is perpendicular to
(
a
−
k
^
)
and
(
b
−
k
^
)
.
Hence, dis parallel to
(
a
−
k
^
)
×
(
b
−
k
^
)
=
∣
∣
i
^
cos
θ
−
sin
θ
j
^
sin
θ
cos
θ
k
^
−
1
−
1
∣
∣
∴
d
=
3
(
c
o
s
θ
−
s
i
n
θ
)
i
^
+
(
c
o
s
θ
+
s
i
n
θ
)
j
^
+
k
^
cos
α
=
d
⋅
k
^
=
3
1
⇒
α
=
cos
−
1
(
3
1
)