Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A triangle has its three sides equal to p, q and r. If the coordinates of its vertices are A(x1, y1), B(x2, y2) and C(x3, y3), then | beginmatrixx1&y1&2 x2&y2&2 x3&y3&2 endmatrix|2 is equal to
Q. A triangle has its three sides equal to p, q and r. If the coordinates of its vertices are
A
(
x
1
,
y
1
)
,
B
(
x
2
,
y
2
)
and
C
(
x
3
,
y
3
)
, then
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
2
2
2
∣
∣
2
is equal to
2703
189
Determinants
Report Error
A
(
p
+
q
+
r
)
33%
B
(
p
+
q
−
r
)
2
0%
C
(
p
+
q
+
r
)
(
q
+
r
−
p
)
(
r
+
p
−
q
)
(
p
+
q
−
r
)
33%
D
(
p
−
q
+
r
)
(
q
+
r
−
p
)
(
p
+
q
−
r
)
33%
Solution:
Let
Δ
be the area of triangle
A
BC
. Then,
Δ
=
2
1
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
⇒
2Δ
=
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
⇒
4Δ
=
2
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
⇒
4Δ
=
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
2
2
2
∣
∣
⇒
16
Δ
2
=
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
2
2
2
∣
∣
2
…
(
i
)
We also know that the area of triangle ABC is given by
Δ
=
s
(
s
−
p
)
(
s
−
q
)
(
s
−
r
)
,
w
h
eres
=
2
1
(
p
+
q
+
r
)
But,
s
=
2
1
(
p
+
q
+
r
)
⇒
s
−
p
=
2
1
(
p
+
q
+
r
)
−
p
=
2
1
(
q
+
r
−
p
)
Similarly,
s
−
q
=
2
1
(
r
+
p
−
q
)
an
d
s
−
r
=
2
1
(
p
+
q
−
r
)
∴
Δ
2
=
2
1
(
p
+
q
+
r
)
⋅
2
1
(
q
+
r
−
p
)
⋅
2
1
(
r
+
p
−
q
)
⋅
2
1
(
p
+
q
−
r
)
⇒
16
Δ
2
=
(
p
+
q
+
r
)
(
q
+
r
−
p
)
(
r
+
p
−
q
)
(
p
+
q
−
r
)
…
(
ii
)
From
(
i
)
an
d
(
ii
)
, we get
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
2
2
2
∣
∣
2
=
(
p
+
q
+
r
)
(
q
+
r
−
p
)
(
r
+
p
−
q
)
(
p
+
q
−
r
)