Q.
A straight line L intersects perpendicularly both the lines 2x+2=3y+6=−10z−34 and 4x+6=−3y−7=−2z−7 then the square of perpendicular distance of origin from L is equal to
so ∥ vector is b=2i^+2j^+k^
Let line perpendicular to L1 \& L2 is L with A and B points respectively on L1&L2 A(2λ−2,3λ−6,−10λ+34) B(4μ−6,−3μ+7,−2μ+7) AB is parallel to 2i^+2j^+k^ ∴22λ−4μ+4=23λ+3μ−13=12μ−10λ+27
solving these, 2λ−4μ+4=3λ+3μ−13 ⇒λ+7μ=17…(1) and 3λ+3μ−13=4μ−20λ+54 ⇒23λ−μ=67…(2)
and 3λ+3μ−13=4μ−20λ+54 →23λ−μ=67.
solving (1) and (2), λ=3 and μ=2 ∴A≡(4,3,4) and B(2,1,3) cosθ=∣AB∣∣OB∣AB⋅OB =3⋅144+2+3=143 d=OBsinθ=14⋅145⇒d=5⇒d2=5