Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A square matrix P satisfies P2 = I - P, where I is the identity matrix. If Pn = 5I - 8P, then n is equal to
Q. A square matrix
P
satisfies
P
2
=
I
−
P
,
where
I
is the identity matrix. If
P
n
=
5
I
−
8
P
, then
n
is equal to
5981
195
Matrices
Report Error
A
4
20%
B
5
33%
C
6
40%
D
7
7%
Solution:
∵
P
3
=
P
(
I
−
P
)
=
P
I
−
P
2
=
P
I
−
(
I
−
P
)
=
P
−
I
+
P
=
2
P
−
1
Now,
P
4
=
P
.
P
3
⇒
P
4
=
P
(
2
P
−
I
)
⇒
P
4
=
2
P
2
−
P
⇒
P
4
=
2
I
−
2
P
−
P
⇒
P
4
=
2
I
−
3
P
and
P
5
=
P
(
2
I
−
3
P
)
⇒
P
5
=
2
P
−
3
(
I
−
P
)
⇒
P
5
=
5
P
−
3
I
Also,
P
6
=
P
(
5
P
−
3
I
)
⇒
P
6
=
5
P
2
−
3
P
⇒
P
6
=
5
(
I
−
P
)
−
3
P
⇒
P
6
=
5
I
−
8
P
So,
n
=
6