A square matrix A is invertible, if and only if A is non-singular matrix, i.e., ∣A∣=0.
Justification Let A be invertible matrix of order n and / be the identity matrix of order n.
Then, there exists a square matrix B of order n such that AB=BA=I.
Now, AB=I. So, ∣AB∣=∣I or ∣A∣∣B∣=1 (since, ∣I∣=1,∣AB∣=∣A∣∣B∣ )
This gives ∣A∣=0.
Hence, A is non-singular.
Conversely, let A be non-singular. Then, ∣A∣=0.
Now, A(adjA)=(adjA)A=∣A∣I
or A(∣A∣1adjA)=(∣A∣1adjA)A=1
or AB=BA=I, where B=∣A∣1 adj A
Thus, A is invertible and A−1=∣A∣1 adj A.