Q.
A solid sphere of radius R makes a perfect rolling down on a plane which is inclined to the horizontal axis at an angle θ. If the radius of gyration is k, then its acceleration is
By forces balancing perpendicular to inclined plane, N=mgcosθ
By forces balancing parallel to inclined plane, mgsin,θ−fr=mdtdv ⇒dtdv=mmgsinθ−fr⇒v(t)=∫gsinθdt−m1∫frdt
Now, torque, τ=Idtdω=r×Fr and I=mk2 ∴mk2dtdω=rFr r dtdω=mk2rFr ⇒ω(t)=mk2R∫frdt
or m1∫frdt=Rk2ω(t)=R2k2v(t)( using ω=v/R) ⇒v(t)=∫gsinθdt−R2k2v(t)
or v(t)=(1+R2k2)1∫gsinθdt
So, acceleration, a(t)=dtdv(t)=(1+R2k2)gsinθ