Given: Charge density ρ=ρ0(1−Rr). By Gauss's Law, we have ∫E⋅ds=ε0Qcnc⇒E×4πr2=ε0Qenc
Now Qenc =∫ρdV=∫ρ0(1−Rr)dV=0∫Rρ0(1−Rr)4πr2dr ⇒Qenc =4πρ00∫R(1−Rr)r2dr=4πρ00∫Rr2dr−Rr3dr=4πρ0{[3r3]0R−[4Rr4]0R}=4πρ0(3R3−4RR4)
Therefore, Qanc =4πρ012R3
Substitute Qenc in Eq. (1), we get E×4πr2=4πρ012R3×ε01 ⇒E=12ε0r2ρ0R3