Q.
A real valued function f(x).Satisfies the functional equation f(x−y)=f(x)f(y)−f(a−x)f(a+y) where a is a given constant and f(0)=1. Then f(2a−x) is equal to
2050
207
AIEEEAIEEE 2005Relations and Functions
Report Error
Solution:
f(x−y)=f(x)f(y)−f(a−x)f(a+y)
Put x=0=y. ∴f(0)=f(0)f(0)−f(a)f(a)=(f(0))2−(f(a))2 ⇒1=1−(f(a))2⇒f(a)=0
Now f(2a−x)=f(a−(x−a)) =f(a)f(x−a)−f(a−a)f(a+x−a) 0⋅f(x−a)−f(0)f(x) =0−1.f(x)=−f(x).