Q.
A real valued function f(x) satisfies the functional equation f(x−y)=f(x)f(y)−f(a−x)f(a+y), where a is any constant and f(0)=1, then f(2a−x) is equal to
Given f(x−y)=f(x)f(y)−f(a−x)f(a+y)
Let x=0=y ∴f(0)=(f(0))2−(f(a))2 ⇒1=1−(f(a))2 ⇒f(a)=0 ∴f(2a−x)=f(a−(x−a)) =f(a)f(x−a)−f(a+x−a)f(0) =0−f(x)(1)=−f(x)(∵f(a)=0,f(0)=1)