Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Physics
A point moves in the x y - plane according to the following equation x=a sin ω t, y=a(1- cos ω t), where a, ω are positive constants. Find the angle between the point's velocity and acceleration vectors.
Q. A point moves in the
x
y
- plane according to the following equation
x
=
a
sin
ω
t
,
y
=
a
(
1
−
cos
ω
t
)
, where
a
,
ω
are positive constants. Find the angle between the point's velocity and acceleration vectors.
1920
206
TS EAMCET 2020
Report Error
A
2
π
B
3
π
C
π
D
2
π
Solution:
Displacement vector,
s
=
x
(
i
^
)
+
y
(
j
^
)
=
a
sin
(
ωi
)
(
i
^
)
+
a
⌊
1
−
cos
(
ω
t
)
j
^
)
Velocity vector,
v
=
d
t
d
s
=
d
t
d
[
a
sin
(
ω
t
)
(
i
^
)
+
a
{
1
−
cos
(
ω
t
)}
(
j
^
)]
=
aω
cos
(
ω
t
)
(
i
^
)
+
a
[
0
−
{
−
ω
sin
(
ω
t
)}]
(
j
^
)
=
aω
cos
(
ω
t
)
(
i
^
)
+
aω
sin
(
ω
t
)
(
j
^
)
Acceleration vector,
a
=
d
t
d
v
=
d
t
d
aω
cos
(
ω
t
)
(
i
^
)
+
aω
sin
(
ω
t
)
(
j
^
)]
=
−
a
ω
2
sin
(
ω
t
)
(
i
^
)
+
a
ω
2
cos
(
ω
t
)
(
j
^
)
Now, calculation of angle between
v
and a
cos
θ
=
∣
v
∣∣
a
∣
v
⋅
a
[
aω
cos
(
ω
t
)
(
i
^
)
+
aω
sin
(
ω
t
)
(
j
^
)
]
cos
θ
=
[
aω
c
o
s
(
ω
t
)
]
2
+
[
aω
s
i
n
(
ω
t
)
]
2
×
[
−
a
ω
2
s
i
n
(
ω
t
)
]
2
+
[
a
ω
2
c
o
s
(
ω
t
)
]
2
⋅
[
−
a
ω
2
s
i
n
(
ω
t
)
(
i
^
)
+
a
ω
2
c
o
s
(
ω
t
)
(
j
^
)
]
cos
θ
=
a
2
ω
2
c
o
s
2
(
ω
t
)
+
a
2
ω
2
s
i
n
2
(
ω
t
)
×
a
2
ω
4
s
i
n
2
(
ω
t
)
+
a
2
ω
4
c
o
s
2
(
ω
t
)
−
a
2
ω
3
c
o
s
(
ω
t
)
s
i
n
(
ω
t
)
+
a
2
ω
3
s
i
n
(
ω
t
)
c
o
s
(
ω
t
)
cos
θ
=
a
2
ω
2
c
o
s
2
(
ω
t
)
+
a
2
ω
2
s
i
n
2
(
ω
t
)
×
a
2
ω
4
s
i
n
2
(
ω
t
)
+
a
2
ω
4
c
o
s
2
(
ω
t
)
0
cos
θ
=
0
⇒
θ
=
2
π