Q.
A particle is moving uniformly in a circular path of radius r. When it moves through an angular displacement θ, then the magnitude of the corresponding linear displacement will be
2829
191
ManipalManipal 2008Motion in a Plane
Report Error
Solution:
In ΔAOBsin2θ=AOAB(∵AO=r) AB=AOsin2θ ⇒AB=rsin2θ AC=AB+BC(∵AB=BC) =rsin2θ+rsin2θ AC=2rsin2θ
So, the magnitude of the corresponding linear displacement will be 2rsin2θ.