Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A parabola is drawn with its focus at (3,4) and vertex at the focus of the parabola y2-12 x-4 y+4=0. The equation of the parabola is:
Q. A parabola is drawn with its focus at
(
3
,
4
)
and vertex at the focus of the parabola
y
2
−
12
x
−
4
y
+
4
=
0
. The equation of the parabola is:
464
157
Conic Sections
Report Error
A
x
2
−
6
x
−
8
y
+
25
=
0
B
y
2
−
8
x
−
6
y
+
25
=
0
C
x
2
−
6
x
+
8
y
−
25
=
0
D
x
2
+
6
x
−
8
y
−
25
=
0
Solution:
y
2
−
12
x
−
4
y
+
4
=
0
y
2
−
4
y
=
12
x
−
4
(
y
−
2
)
2
=
12
x
Y
2
=
12
X
focus :
X
=
A
,
Y
=
0
x
=
3
,
y
=
2
A
(
3
,
2
)
equ. of directrix is
y
=
0
,
PS
=
PM
(
x
−
3
)
2
+
(
y
−
4
)
2
=
∣
y
∣
by squaring, we will get
(
x
−
3
)
2
+
(
y
−
4
)
2
=
y
2
x
2
−
6
x
−
8
y
+
25
=
0