Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A line (x+2/1)=(y-3/2)=(z-k/3) cuts the y-z plane and the x-y plane at A and B respectively. If angle A O B=(π/2), then 2 k, where O is the origin, is
Q. A line
1
x
+
2
=
2
y
−
3
=
3
z
−
k
cuts the
y
−
z
plane and the
x
−
y
plane at
A
and
B
respectively. If
∠
A
OB
=
2
π
, then
2
k
, where
O
is the origin, is
589
161
Report Error
Answer:
9
Solution:
1
x
+
2
=
2
y
−
3
=
3
z
−
k
=
λ
⇒
(
λ
−
2
,
2
λ
+
3
,
3
λ
+
k
)
for
A
,
λ
=
2
A
(
0
,
7
,
6
+
k
)
⇒
for
B
λ
=
−
3
k
⇒
B
(
−
2
−
3
k
,
3
−
3
2
k
,
0
)
∠
A
OB
=
9
0
∘
⇒
A
O
⋅
OB
=
0
⇒
7
(
−
3
+
3
2
k
)
=
0
or
k
=
2
9
⇒
2
k
=
9