Q.
A line through A (- 5, - 4) meets the line x + 3y + 2 = 0, 2x + y + 4 = 0 and x - y - 5 = 0 at B, C and D respectively. If (AB15)2+(AC10)2=(AD6)2 then the equation of the line
The parametric equation of a line through A is cosθx+5=sinθy+4=r
Let AB=r1,AC=r2 and AD=r3
Then the coordinates of B, C, D are (−5,+r1cosθ−4+risinθ),i=1,2,3
Now B lies on the line x+3y+2=0 ∴−5+ricosθ+3(−4+r1sinθ)+2=0 r115=cosθ+3sinθ C lies on 2x+y+4=0 ∴2(−5+r2cosθ)+(−4+r2sinθ)+4=0 ⇒r210=2cosθ+sinθ D lies on x−y−5=0 ∴−5+r3cosθ+4−r3sinθ−5=0⇒r36=cosθ−sinθ.
From the given condition (AB15)2+(AC10)2=(AD6)2
we get, (cosθ+3sinθ)2+(2cosθ+sinθ)2=(cosθ−sinθ)2 ⇒(2cosθ+3sinθ)2=0⇒tanθ=−32 ∴ Equation of the line is y+4=−32(x+5)⇒2x+3y+22=0