The equation of any line through the point P(α,β) is cosθx−α​=sinθy−β​=k (say)
Any point on this line is (α+kcosθ,β+ksinθ)
This point lies on the given circle, if (α+kcosθ)2+(β+ksinθ)2=r2
or k2+2k(αcosθ+βsinθ) +α2+β2−r2=0…(i)
Which being quadratic in k, gives two values of k.
Let PA=k1​,PB=K2​, where k1​,K2​ 2 are the roots of Eq. (i), then PA⋅PB=k1​k2​=α2+β2−r2