Given, dxxdy−2y=x4y2 or dxdy−x2y=x3y2. Now dividing by y2, we get y21dxdy−y2x1=x3 ....(i)
This is a Bernouli's differential equation, substituting y−2=t, we get ⇒y22dxdy=dxdt. So, equation (i) becomes ⇒21dxdt+xt=x3⇒dxdt+x2t=2x3 IF=e∫x2dx=e2lnx=elnx2=x2
So, general solution is given by x2t=62x6+C⇒y−x2⋅2=3x6+C⇒y−2=3x4+x2C
If x=1,y=−6⇒C=0 ∴y−2=3x4⇒y=x4−6 i.e. f(x)=x4−6
Now, dxdy=24x−5=x524. Hence, dxdy]x=351=324=8.