Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A function y=f(x) satisfies the condition f prime(x) sin x+f(x) cos x=1, f(x) being bounded when x arrow 0. If I =∫ limits0π / 2 f( x ) dx then
Q. A function
y
=
f
(
x
)
satisfies the condition
f
′
(
x
)
sin
x
+
f
(
x
)
cos
x
=
1
,
f
(
x
)
being bounded when
x
→
0
. If
I
=
0
∫
π
/2
f
(
x
)
d
x
then
334
111
Differential Equations
Report Error
A
2
π
<
I
<
4
π
2
B
4
π
<
I
<
2
π
2
C
1
<
I
<
2
π
D
0
<
I
<
1
Solution:
sin
x
d
x
d
y
+
y
cos
x
=
1
d
x
d
y
+
y
cot
x
=
cosec
x
I.F.
=
e
∫
c
o
t
x
d
x
=
e
l
n
(
s
i
n
x
)
=
sin
x
y
sin
x
=
∫
cosec
x
⋅
sin
x
d
x
y
sin
x
=
x
+
C
if
x
=
0
,
y
is finite
∴
CC
=
0
y
=
x
(
cosec
x
)
=
s
i
n
x
x
Now
I
<
4
π
2
and
I
>
2
π
Hence
2
π
<
I
<
4
π
2
⇒
(
A
)