Q.
A function y=f(x) has second order derivative f′′(x)=6(x−1) . If its graph passes through the point (2,1) and at that point the tangent to the graph is y=3x−5, then the function is
We have, f′′(x)=6x−6 On integrating, we get f′(x)=3x2−6x+c At x=2,f′(2)=3 ⇒12−12+c=3 ⇒c=3 ∴f′(x)=3x2−6x+3
Again integrating we get f(x)=x3−3x2+3x+d
when x=2,y=1f(2)=1=(2)3−3(2)2+3(2)+d ⇒d=−1 ∴f(x)=x3−3x2+3x−1 =(x−1)3