Given, x=t31+t…1
and y=2t23+t2…2
From equation 1,x=t31+t21.
Differentiating the above equation 1 with respect to t we get, dtdx=dtdt31+t21 ⇒dtdx=dtdt31+dtdt21 ⇒dtdx=t4−3+t3−2 ⇒dtdx=−t43+2t
Differentiating equation 2 with respect to t we get, dtdy=23t3−2+2t2−1 ⇒dtdy=−t33+2t
Hence, dxdy=dtdxdtdy. dxdy=t
Hence, dxdy−xdxdy3=t−xt3 ⇒dxdy−xdxdy3=t−t31+tt3 { from equation 1} dxdy−xdxdy3=−1 dxdy−xdxdy3=−1=1