Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A function f: R arrow R satisfies the equation f(x +y)=f(x) .f(y), x, y ∈ R and f(x) ≠ 0 for any x ∀ R. If f is differentiable at ' 0 ' f'(0)=3 and f(5)=2 then f'(5)=
Q. A function
f
:
R
→
R
satisfies the equation
f
(
x
+
y
)
=
f
(
x
)
.
f
(
y
)
,
x
,
y
∈
R
and
f
(
x
)
=
0
for any
x
∀
R
. If
f
is differentiable at ' 0 '
f
′
(
0
)
=
3
and
f
(
5
)
=
2
then
f
′
(
5
)
=
1995
220
Report Error
A
2
24%
B
4
29%
C
6
29%
D
8
19%
Solution:
f
(
x
)
=
f
(
x
+
0
)
=
f
(
x
)
.
f
(
0
)
⇒
f
(
0
)
=
1
f
′
(
5
)
=
h
→
0
lim
h
f
(
5
+
h
)
−
f
(
5
)
h
→
0
lim
h
f
(
5
)
f
(
h
)
−
f
(
5
)
=
h
→
0
lim
h
f
(
5
)
[
f
(
h
)
−
1
]
=
f
(
5
)
.
h
→
0
lim
h
f
(
h
)
−
f
′
(
0
)
=
f
(
5
)
f
(
0
)
=
2
×
3
=
6