Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A curve passing through (2,3) and satisfying the differential equation ∫ limits0x t y(t) d t=x2 y(x),(x>0) is -
Q. A curve passing through
(
2
,
3
)
and satisfying the differential equation
0
∫
x
t
y
(
t
)
d
t
=
x
2
y
(
x
)
,
(
x
>
0
)
is -
851
187
Differential Equations
Report Error
A
x
2
+
y
2
=
13
B
y
2
=
2
9
x
C
8
x
2
+
18
y
2
=
1
D
x
y
=
6
Solution:
0
∫
x
t
y
(
t
)
d
t
=
x
2
y
(
x
)
Differentiating, we get
x
y
=
2
x
y
+
x
2
d
x
d
y
⇒
x
2
d
x
d
y
+
x
y
=
0
x
d
x
d
y
+
y
=
0
⇒
x
d
y
+
y
d
x
=
0
d
(
x
y
)
=
0
⇒
x
y
=
c
∴
since it passes through
(
2
,
3
)
∴
c
=
6
Hence
x
y
=
6.