Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A curve passes through the point (1, (π/4)) its slope at any point is given by (y/x)- cos 2((y/x)). Then the curve has the equation
Q. A curve passes through the point
(
1
,
4
π
)
&
its slope at any point is given by
x
y
−
cos
2
(
x
y
)
. Then the curve has the equation
811
104
Differential Equations
Report Error
A
y
=
x
tan
−
1
(
ln
x
e
)
B
y
=
x
tan
−
1
(
ln
+
2
)
C
y
=
x
1
tan
−
1
(
ln
x
e
)
D
none
Solution:
d
x
d
y
=
x
y
−
cos
2
x
y
y
=
vx
V
+
x
d
x
d
v
=
v
−
cos
2
v
∫
c
o
s
2
v
d
v
+
∫
x
d
x
=
C
tan
v
+
ln
x
=
C
tan
x
y
+
ln
x
=
C
if
x
=
1
,
y
=
4
π
⇒
C
=
1
tan
x
y
=
1
−
ln
x
=
ln
x
e
y
=
x
tan
−
1
(
ln
x
y
)
⇒
A