Here, slope of tangent dxdy=(x+1)(x+1)2+y−3 ⇒dxdy=(x+1)+(x+1)(y−3),
put x+1=X and y−3=Y( here dxdy=dXdY) ∴dXdY=X+XY⇒dXdY−X1Y=X
where integrating factor =e∫−x1dX=e−ℓnX=X1 ∴ Solution is, Y⋅X1=∫X⋅X1dX+c⇒XY=X+c y−3=(x+1)2+c(x+1), which passes through (2,0) −3=9+3c ⇒c=−4 ∴ Required curve ∴y=(x+1)2−4(x+1)+3 ⇒y=x2−2x
Drawing curve
Thus, required area =∣∣0∫2(x2−2x)dx∣∣=∣∣(3x3−x2)02∣∣=34 sq. units