Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a n =16,4,1, ldots be a geometric sequence. Define P n as the product of the first n terms. The value of displaystyle∑n=1∞ √[n]Pn
Q. Let
a
n
=
16
,
4
,
1
,
…
be a geometric sequence. Define
P
n
as the product of the first
n
terms. The value of
n
=
1
∑
∞
n
P
n
73
105
Sequences and Series
Report Error
A
8
B
16
C
32
D
64
Solution:
For the G.P. a, ar,
a
2
2
,
……
....
.
P
n
=
a
(
a
r
)
(
a
r
2
)
……
..
(
a
n
−
1
)
=
a
n
r
n
(
n
−
1
)
/2
∴
S
=
n
=
1
∑
∞
p
P
n
=
n
=
1
∑
∞
a
r
(
n
−
1
)
/2
now,
n
=
1
∑
∞
a
r
(
n
−
1
)
/2
=
a
[
1
+
r
+
r
+
r
r
+
……
+
∞
]
=
1
−
r
a
Given
a
=
16
and
r
=
1/4
∴
S
=
1
−
(
1/2
)
16
=
32