Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A=[ cos (π/4) sin (π/4) 0 - sin (π/4) cos (π/4) 0 0 0 1] B=[1 0 0 0 cos (π/3) sin (π/3) 0 - sin (π/3) cos (π/3)] C=[ cos (π/6) 0 sin (π/6) 0 1 0 - sin (π/6) cos (π/6) 0] D=[ cos (π/2) sin (π/2) 0 - sin (π/2) cos (π/2) 0 0 0 1]
Q.
A
=
⎣
⎡
cos
4
π
−
sin
4
π
0
sin
4
π
cos
4
π
0
0
0
1
⎦
⎤
B
=
⎣
⎡
1
0
0
0
cos
3
π
−
sin
3
π
0
sin
3
π
cos
3
π
⎦
⎤
C
=
⎣
⎡
cos
6
π
0
−
sin
6
π
0
1
cos
6
π
sin
6
π
0
0
⎦
⎤
D
=
⎣
⎡
cos
2
π
−
sin
2
π
0
sin
2
π
cos
2
π
0
0
0
1
⎦
⎤
1907
197
AP EAMCET
AP EAMCET 2020
Report Error
A
A
2020
=
I
B
B
2020
=
I
C
A
D
2019
=
I
D
B
2022
=
I
Solution:
Given matrix
A
=
⎣
⎡
cos
4
π
−
sin
4
π
0
sin
4
π
cos
4
π
0
0
0
1
⎦
⎤
⇒
A
2
=
⎣
⎡
cos
2
π
−
sin
2
π
0
sin
2
π
cos
2
π
0
0
0
1
⎦
⎤
∴
A
2
=
D
=
⎣
⎡
cos
2
π
−
sin
2
π
0
sin
2
π
cos
2
π
0
0
0
1
⎦
⎤
=
⎣
⎡
0
−
1
0
1
0
0
0
0
1
⎦
⎤
∴
A
4
=
⎣
⎡
−
1
0
0
0
−
1
0
0
0
1
⎦
⎤
=
D
2
⇒
A
8
=
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
∴
A
2020
=
(
A
505
)
4
=
(
(
A
8
)
63
⋅
A
)
4
=
(
I
63
⋅
A
)
4
=
A
4
=
I
Similarly,
D
4
=
I
, SO
D
2019
=
I
Now,
B
=
⎣
⎡
1
0
0
0
cos
3
π
−
sin
3
π
0
sin
3
π
cos
3
π
⎦
⎤
⇒
B
2
=
⎣
⎡
1
0
0
0
cos
3
2
π
−
sin
3
2
π
0
sin
3
2
π
cos
3
2
π
⎦
⎤
⇒
B
4
=
⎣
⎡
1
0
0
0
cos
3
4
π
−
sin
3
4
π
0
sin
3
4
π
cos
3
4
π
⎦
⎤
⇒
B
6
=
⎣
⎡
1
0
0
0
cos
3
6
π
−
sin
3
6
π
0
sin
3
6
π
cos
3
6
π
⎦
⎤
=
I
∴
B
2020
=
I
but
B
2022
=
(
B
6
)
337
=
I
337
=
I