Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A complex number z is the said to be unimodular if |z|=1 . Suppose z1 and z2 are complex number such that (z1-2 z2/2-z1 z2) is unimodular and z 2 is not unimodular. Then the point z1 lies on a :
Q. A complex number
z
is the said to be unimodular if
∣
z
∣
=
1.
Suppose
z
1
and
z
2
are complex number such that
2
−
z
1
z
2
z
1
−
2
z
2
is unimodular and
z
2
is not unimodular. Then the point
z
1
lies on a :
2327
231
JEE Main
JEE Main 2015
Complex Numbers and Quadratic Equations
Report Error
A
Straight line parallel to x-axis
100%
B
Straight line parallel to y-axis
0%
C
Circle of radius 2
0%
D
Circle of radius
2
0%
Solution:
∣
∣
2
−
z
1
z
ˉ
2
z
1
−
2
z
2
∣
∣
=
1
(
z
1
−
2
z
2
)
(
z
ˉ
1
−
2
z
ˉ
2
)
=
(
2
−
z
1
z
ˉ
2
)
(
2
−
z
ˉ
1
z
2
)
∣
z
1
∣
2
−
2
z
1
z
ˉ
2
−
2
z
2
z
ˉ
1
+
4
∣
z
2
∣
2
=
4
−
2
z
ˉ
1
z
2
−
2
z
1
z
ˉ
2
+
∣
z
1
∣
2
∣
z
2
∣
2
∣
z
1
∣
2
∣
z
2
∣
2
−
∣
z
1
∣
2
−
4
∣
z
2
∣
2
+
4
=
0
(
∣
z
1
∣
2
−
4
)
(
∣
z
2
∣
2
−
1
)
=
0
⇒
∣
z
1
∣
=
2