Q.
A complex number z is said to be unimodular if ∣z∣=1 . Let, z1 and z2 are complex numbers such that 2−z1zˉ2z1−2z2 is unimodular and z2 is not unimodular, then the point z1 lies on a
1966
230
NTA AbhyasNTA Abhyas 2020Complex Numbers and Quadratic Equations
Report Error
Solution:
Given, 2−z1zˉ2z1−2z2 is unimodular ⇒∣∣2−z1zˉ2z1−2z2∣∣=1 ⇒∣z1−2z2∣=∣2−z1zˉ2∣
Squaring both the sides, we get, ∣z1−2z2∣2=∣2−z1zˉ2∣2 ⇒((z)1−2(z)2)((zˉ)1−2(zˉ)2)=(2−(z)1(zˉ)2)(2−(zˉ)1(z)2) (∵(∣z∣)2=z zˉ) ⇒z1zˉ1−2z1zˉ2−2zˉ1z2+4z2zˉ2 =4−2zˉ1z2−2z1zˉ2+z1zˉ1z2zˉ2 ⇒∣z1∣2+4∣z2∣2=4+∣z1∣2∣z2∣2 ⇒∣z1∣2−4+4∣z2∣2−∣z1∣2∣z2∣2=0 ⇒((∣(z)1∣)2−4)(1−(∣(z)2∣)2)=0 ⇒∣z1∣=2or ∣z2∣=1
Given, z2 is not unimodular ∴∣z1∣=2 ∴ Point z1 lies on a circle of radius 2 .