Q.
A bag contains 30 tokens numbered serially from 0 to 29. The number of ways of choosing 3 tokens from the bag, such that the sum on them is 30, is
2169
236
NTA AbhyasNTA Abhyas 2020Permutations and Combinations
Report Error
Solution:
Let, a,b,c be the selected numbers; a+b+c=30;a<b<c. a=0⇒(b,c)=(1,29)(2,28).....(14,16)→Total14ways. a=1⇒(b,c)=(2,27)(3,26).....(14,15)→Total13ways. a=2⇒(b,c)=(3,25)(4,24).....(13,15)→Total11ways. a=3⇒(b,c)=(4,23)(5,22).....(13,14)→Total10ways. a=4⇒(b,c)=(5,21)(6,20).....(12,14)→Total8ways. a=5⇒(b,c)=(6,19)(7,18).....(12,13)→Total7ways. a=6⇒(b,c)=(7,17)(8,16).....(11,13)→Total5ways. a=7⇒(b,c)=(8,15)(9,14).....(11,12)→Total4ways. a=8⇒(b,c)=(9,13)(10,12)→Total2ways. a=9⇒(b,c)=(10,11)→Total1way.
So, the total number of ways =1+2+4+5+7+8+10+11+13+14=75.