Given :51+x+51−x,2a,52x+5−2x are in A.P.
We know that if a,b,c are in A.P. then 2b=a+c ∴2⋅2a=51+x+51−x+52x+5−2x ⇒a=5.5x+5(5x)−1+(5x)2+(5x)−2
Let 5x=t ∴a=5t+t5+t2+t21 ⇒a=t2+t21+5(t+t1) ⇒a=(t+t1)2−2+5(t+t1)
Put t+t1=A ∴a=A2+5A−2 [ add & subtract (2ab)2] ⇒a=[A2+5A−(25)2]+(25)2−2 ⇒a=(A−25)2+417 ⇒a≥417