Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
34 Let f :[1,3] arrow[0, ∞) be continuous and differentiable function and if (f(3)-f(1)) ⋅(f2(3)+f2(1)+f(3) f(1))=k f2(c) f prime(c) where c ∈(1,3), then find the value of k.
Q. 34 Let
f
:
[
1
,
3
]
→
[
0
,
∞
)
be continuous and differentiable function and if
(
f
(
3
)
−
f
(
1
))
⋅
(
f
2
(
3
)
+
f
2
(
1
)
+
f
(
3
)
f
(
1
)
)
=
k
f
2
(
c
)
f
′
(
c
)
where
c
∈
(
1
,
3
)
, then find the value of
k
.
117
125
Application of Derivatives
Report Error
Answer:
0006
Solution:
Let
F
(
x
)
=
f
3
(
x
)
and
F
(
x
)
is continuous and differentiable function in
[
1
,
3
]
.
∴
3
−
1
F
(
3
)
−
F
(
1
)
=
F
′
(
c
)
(using L.M.V.T.)
2
f
3
(
3
)
−
f
3
(
1
)
=
3
f
2
(
c
)
⋅
f
′
(
c
)
⇒
k
=
6