Q.
3 points O(0,0),P(a,a2),Q(−b,b2)(a>0,b>0) are on the parabola y=x2. Let S1 be the area bounded by the line PQ and the parabola and let S2 be the area of the triangle OPQ, the minimum value of S1/S2 is
mPQ=a+ba2−b2=a−b
equation of PQ y−a2=a+ba2−b2(x−a) or y−a2=(a−b)(x−a) y=a2+x(a−b)−a2+ab y=(a−b)x+ab ∴S1=−b∫a(a−b)x+ab−x2)dx
which simplifies to 6(a+b)3 .....(1)
Also S2=21∣∣a−b0a2b20111∣∣=21[ab2+a2b]=21ab(a+b)....(2) ∴S2S1=6(a+b)3⋅ab(a+b)2=3ab(a+b)2=31[ba+ab+2] ∴S2S1∣∣min.=34