Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
1508 The equation of straight line with gradient 1 , passing through (( m /2), ( n /2)) where m , n ∈ R satisfies the equation sec 2(n(m+2))+m2=1(. where .n ∈[(-π/2), (π/2)]) can be
Q. 1508 The equation of straight line with gradient 1 , passing through
(
2
m
,
2
n
)
where
m
,
n
∈
R
satisfies the equation
sec
2
(
n
(
m
+
2
))
+
m
2
=
1
(
where
n
∈
[
2
−
π
,
2
π
]
)
can be
827
98
Straight Lines
Report Error
A
x
+
y
=
0
B
x
−
y
=
0
C
x
−
y
+
4
π
=
0
D
x
−
y
−
4
π
=
0
Solution:
tan
2
(
m
+
2
)
n
+
m
2
=
0
m
=
0
,
tan
2
(
m
+
2
)
n
=
0
⇒
tan
2
2
n
=
0
⇒
n
=
0
,
2
π
,
−
2
π
(
m
,
n
)
=
(
0
,
0
)
(
0
,
π
/2
)
,
(
0
,
−
π
/2
)
Equation of straight lines:
y
−
0
=
1
(
x
−
0
)
⇒
x
−
y
=
0
y
−
4
π
=
1
(
x
−
0
)
⇒
x
−
y
+
4
π
=
0
y
+
4
π
=
1
(
x
−
0
)
⇒
x
−
y
−
4
π
=
0