Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
In a triangle A B C, if the mid-points of sides A B, B C, C A are (3,0,0),(0,4,0),(0,0,5) respectively, then A B2+B C2+C A2=
Q. In a triangle
A
BC
, if the mid-points of sides
A
B
,
BC
,
C
A
are
(
3
,
0
,
0
)
,
(
0
,
4
,
0
)
,
(
0
,
0
,
5
)
respectively, then
A
B
2
+
B
C
2
+
C
A
2
=
2058
194
AP EAMCET
AP EAMCET 2019
Report Error
A
50
50%
B
200
0%
C
300
0%
D
400
50%
Solution:
Given, mid-point of sides
A
B
,
BC
,
C
A
are
(
3
,
0
,
0
)
,
(
0
,
4
,
0
)
,
(
0
,
0
,
5
)
.
∴
A
=
(
3
,
−
4
,
5
)
B
=
(
3
,
4
,
−
5
)
and
C
=
(
−
3
,
4
,
5
)
A
B
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
+
(
z
2
−
z
1
)
2
=
(
3
−
3
)
2
+
(
4
+
4
)
2
+
(
−
5
−
5
)
2
=
8
2
+
1
0
2
=
164
B
C
2
=
(
−
3
−
3
)
2
+
(
4
−
4
)
2
+
(
5
+
5
)
2
=
36
+
100
=
136
And
C
A
2
=
(
−
3
−
3
)
2
+
(
4
+
4
)
2
+
(
5
−
5
)
2
=
(
−
6
)
2
+
(
8
)
2
=
36
+
64
=
100
Now,
A
B
2
+
B
C
2
+
C
A
2
=
164
+
136
+
100
=
400