Here, general term of denominator is n=1∑100(n2+1)n!=n=1∑100[(n+1)2n!−2n,n!] =n=1∑100[(n+1)(n+1)!−n⋅n!]−n=1∑100n⋅n! =n=1∑100[(n+1)(n+1)!−n⋅n!]−n=1∑100(n+1)!−n! ⎣⎡2⋅2!+3⋅3!⋮+101⋅101!−−−1⋅1!2⋅2!100⋅100!⎦⎤−⎣⎡2!+3!⋮+101!−−−1!2!100!⎦⎤ =[101⋅101!−1]−[101!−1]
Denominator =100⋅101!
Consider, 100×101×100!10001×100! =1010010001