Given, k⋅109=109+2(11)1(10)8+3(11)2(10)7+…+10(11)9 ⇒k=1+2(1011)+3(1011)2+…+10(1011)9.… (i) (1011)k=1(1011)+2(1011)2+…+9(1011)9+10(1011)10… (ii)
On subtracting Eq. (ii) from Eq. (i), we get k(1−1011)=1+1011+(1011)2+…+(1011)9−10(1011)10 ⇒k(1010−11)=(1011−1)1[(1011)10−1]−10(1011)10 [∵InGP, sum of n terms =r−1a(rn−1), when r>1] ⇒−k=10[10(1011)10−10−10(1011)10] ∴k=100