Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
[(1+ cos((π/12)) + i sin((π/12))/1+ cos((π)12) - i sin((π)12)] =
Q.
[
1
+
c
o
s
(
12
π
)
−
i
s
i
n
(
12
π
)
1
+
c
o
s
(
12
π
)
+
i
s
i
n
(
12
π
)
]
=
2453
204
TS EAMCET 2017
Report Error
A
0
0%
B
-2
0%
C
1
100%
D
2
1
0%
Solution:
Consider,
[
(
1
+
c
o
s
12
π
)
−
i
s
i
n
12
π
(
1
+
c
o
s
12
π
)
+
i
s
i
n
12
π
]
72
=
[
2
c
o
s
2
24
π
−
i
2
s
i
n
24
π
c
o
s
24
π
2
c
o
s
2
24
π
+
i
2
s
i
n
24
π
c
o
s
24
π
]
72
=
[
2
c
o
s
24
π
(
c
o
s
24
π
−
i
s
i
n
24
π
)
2
c
o
s
24
π
(
c
o
s
24
π
+
i
s
i
n
24
π
)
]
72
=
(
(
c
o
s
24
π
−
i
s
i
n
24
π
)
(
c
o
s
24
π
+
i
s
i
n
24
π
)
)
72
=
(
(
c
o
s
24
π
−
i
s
i
n
24
π
)
(
c
o
s
24
π
+
i
s
i
n
24
π
)
×
(
c
o
s
24
π
+
i
s
i
n
24
π
)
(
c
o
s
24
π
+
i
s
i
n
24
π
)
)
72
=
(
c
o
s
2
24
π
−
i
2
s
i
n
2
24
π
(
c
o
s
24
π
+
i
s
i
n
24
π
)
2
)
72
=
(
c
o
s
2
24
π
+
s
i
n
2
24
π
(
c
o
s
24
π
+
i
s
i
n
24
π
)
2
)
72
=
(
cos
24
π
+
i
sin
24
π
)
144
=
cos
(
24
π
×
144
)
+
i
sin
(
24
π
×
144
)
[By Demoivre's theorem]
=
cos
6
π
+
i
sin
6
π