Let S=1+42+42⋅85+4.8.122.5.8+…
On comparing with (1+x)n=1+nx+2!n(n−1)x2+….,
we get nx=42...(i)
and 2!n(n−1)x2=4.82.5...(ii)
From Eqs. (i) and (ii) n2x22!n(n−1)x2=4.22.24.82.5 ⇒nn−1=25 ⇒2n−2=5n ⇒n=−32
On putting the value of n in Eq. (i), we get −32x=42 ⇒x=−43 ∴S=(1+x2)n=(1−43)−2/3=(41)−2/3=316