Thank you for reporting, we will resolve it shortly
Q.
$x^{y} \cdot y^{x}=1$, then $\frac{d y}{d x}$ is:
Jharkhand CECEJharkhand CECE 2002
Solution:
We have $x^{y} \cdot y^{x}=1$
On taking log on both sides, we get
$y \log x+x \log y=0$
On differentiating w.r.t. $x$, we get
$\frac{y}{x}+\log x \frac{d y}{d x}+\frac{x}{y} \frac{d y}{d x}+\log y=0$
$\Rightarrow \frac{d y}{d x}\left(\log x+\frac{x}{y}\right)=-\left(\log y+\frac{y}{x}\right)$
$\Rightarrow \frac{d y}{d x}=\frac{-y(x \log y+y)}{x(y \log x+x)}$