Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which transition in the hydrogen atomic spectrum will have the same wavelength as the Balmer transition (i.e. $n=4$ to $n=2$ ) of $He ^{+}$spectrum?

AIIMSAIIMS 2017

Solution:

$\because \frac{1}{\lambda}=Z^{2} \cdot R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\therefore $ For $He ^{+}$ion, $Z=2$
$\frac{1}{\lambda}=2^{2} \cdot R\left[\frac{1}{2^{2}}-\frac{1}{4^{2}}\right]$
$\frac{1}{\lambda}=4 \times R \times \frac{3}{16}=\frac{3}{4} R$
The same value for $H$-atom is possible when electron jumps from $n=2$ to $n=1$, i.e.
$\frac{1}{\lambda}=1 \times R\left[\frac{1}{1}-\frac{1}{4}\right]$
$\Rightarrow \frac{3}{4} R$