Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
Which one of the following corresponds to a photon of highest energy?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Which one of the following corresponds to a photon of highest energy?
WBJEE
WBJEE 2017
Structure of Atom
A
$\lambda = 300\, nm$
64%
B
$v = 3 × 10^8 s^{-1}$
19%
C
$\bar{v} = 30 \,cm^{-1}$
7%
D
$E = 6.626 × 10^{-27}J$
10%
Solution:
(a) $\because E=h v=\frac{h c}{\lambda}=h c \cdot \bar{v} $
$\left(\because \frac{1}{\lambda}=\bar{v}\right)$
where $E=$ energy of photon
$c=$ velocity of photon $(=$ light $)$
$\lambda=$ wavelength of photon
$h=$ plank's constant.
$\therefore $ For (a)
$E=6.63 \times 10^{-34} \times 3 \times 10^{8} / 300 \times 10^{-9}$
$E=1.98 \times 10^{-25} \cdot J / 300 \times 10^{-9}$
$\therefore E=\frac{1.98 \times 10^{-25} J }{300 \times 10^{-9} m }$
(a) $\rightarrow E=6.6 \times 10^{-19} J$
For (b) $E=h v=6.63 \times 10^{-34} \times 3 \times 10^{8}$
(b) $\rightarrow E=1.98 \times 10^{-25} J$
For (c) $E=h c \times \bar{v} $
$\left(\because \frac{1}{\lambda}=\bar{v}\right)$
$E=6.63 \times 10^{-34} \times 3 \times 10^{8} \times 30 \times 10^{-2}$
(c) $\Rightarrow E=5.96 \times 10^{-26}$
For (d) $d \rightarrow E=6.62 \times 10^{-27} J$
Hence, highest energy for photon is in $(a)$.