Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Which of the following statements is INCORRECT?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Which of the following statements is
INCORRECT
?
Sequences and Series
A
If $S _1, S_2, S_3$ are the sum of first $n$ natural numbers, their squares and their cubes, respectively, then $7S_{2}^{2} = S_{3}(1 + 8S_{1})$.
21%
B
A farmer buys a used tractor for $₹\, 12000$. He pays $₹\,6000$ cash and agrees to pay the balance in annual installments of $₹\, 500$ plus $12\% $ interest on the unpaid amount. The tractor will cost him for $₹\, 16680$.
71%
C
If the $p^{th }$ and $q^{th}$ terms of a $G.P$. are $q$ and $p$ respectively, then its $\left(p + q\right)^{th}$ term is $\left(\frac{q^{p}}{p^{q}}\right)^{\frac{1}{p-q}}$.
0%
D
None of these
7%
Solution:
(a) If $S_{1},S_{2,} S_{3}$ are the sum of first $n$ natural numbers, their squares and their cubes respectively, then
$S_{1} = \sum\limits_{k=1}^{n} k= \frac{n\left(n+1\right)}{2}$,
$ S_{2} = \sum\limits _{k=1}^{n} k^{2} = \frac{n\left(n+1\right)\left(2n+1\right)}{6} $
$ S_{3} = \sum \limits_{k=1}^{n} k^{3} \left[\frac{n\left(n+1\right)}{2}\right]^{2}$
Now, $1+8S_{1} = 1+8\left[\frac{n\left(n+1\right)}{2}\right]$
$ = 1+4n\left(n+1\right) = \left(2n+1\right)^{2} $
$ \therefore S_{3} \left(1+8S_{1}\right) = \left[ \frac{n\left(n+1\right)}{2}\right]^{2} \left(2n+1\right)^{2} $
$= \left[\frac{n\left(n+1\right)\left(2n+1\right)}{2}\right]^{2}$
$ = \frac{9}{9} \left[\frac{n\left(n+1\right)\left(2n+1\right)}{2}\right]^{2}$
$ =9\left[\frac{n\left(n+1\right)\left(2n+1\right)}{6}\right]^{2} = 9S_{2}^{2}$
(b) Farmer purchased a tractor for $₹ \,12,000$. After paying $₹ \,6000$, he will left with $₹\, 6000$.
$ 1^{st}$ interest paid $= ₹\, \frac{6000\times12}{100} = ₹\,720$
$ 2^{nd }$ interest paid $= ₹ \,\frac{5500\times12}{100} = ₹\, 660$
$⋮ \qquad ⋮ \qquad ⋮$
$12^{th} $ interest paid $= ₹\, \frac{500\times12}{100} = ₹ \,60$
$ \therefore $ Total amount of interest $= ₹\, \left[720+660+.....+60\right]$
$=₹\,\left[\frac{12}{2}\left(720+60\right)\right] = ₹\, \left(6\times780\right)= ₹\,4680$
$\therefore $ The cost of tractor $= ₹\, \left(12000+4680\right) = ₹ \,16680$.
$ \left(c\right) T_{p}= q$
$ \Rightarrow ar^{p-1} = q\quad...\left(i\right)$
and $T_{q} =p $
$ \Rightarrow ar^{q-1}= p \quad...\left(ii\right)$
On dividing $\left(i\right)$ by $\left(ii\right)$, we get
$ \frac{ar^{p-1}}{ar^{q-1}} = \frac{q}{p} $
$\Rightarrow r^{p-q} = \frac{q}{p}$
$\Rightarrow r= \left(\frac{q}{p}\right)^{\frac{1}{p-q}} \quad ...\left(iii\right)$
Putting the value of $r$ in $\left(i\right)$, we get
$ a\left(\frac{q}{p} \right)^{\frac{p-1}{p-q}} = q $
$ \Rightarrow a = \frac{q}{ \left(\frac{q}{p}\right)^{\frac{p-1}{q-1}}} = q\cdot\left(\frac{p}{q}\right) ^{\frac{p-1}{p-q}} \quad ...\left(iv\right)$
$ \therefore \left(p+q\right)^{th }$ term, $T_{p+q} = a\cdot r^{p+q-1}$
$= q\cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}}\left[\left(\frac{q}{p}\right)^{\frac{1}{p-q}}\right]^{p+q-1}$ [using $(iii)$ and $(iv)$]
$= q\cdot\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \left(\frac{q}{p}\right)^{\frac{p+q-1}{p-q}} = q\cdot \left(\frac{p}{q}\right)^{\frac{p-1}{p-q}-\frac{\left(p+q-1\right)}{p-q}}$
$ = q\cdot\left(\frac{p}{q}\right)^{\frac{-q}{p-q}} = q\left(\frac{q}{p}\right)^{\frac{q}{p-q}}= \frac{q^{\frac{q}{p-q}+1}}{p^{\frac{q}{p-q}}}$
$ = \frac{q^{\frac{p}{p-q}}}{p^{\frac{q}{p-q}}} = \left(\frac{q^{p}}{p^{q}}\right)^{\frac{1}{p-q}}$