Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Which of the following rate law corresponds to the data shown for the reaction?
Experiment $\left[Al_{0} = M$ $\left[\right.B\left]\right._{0}=M$ Initial rate
$1$ $0.012$ $0.035$ $0.10$
$2$ $0.024$ $0.070$ $0.80$
$3$ $0.024$ $0.035$ $0.10$
$4$ $0.012$ $0.070$ $0.80$

NTA AbhyasNTA Abhyas 2020

Solution:

$\frac{\text{ Expt. } 4}{\text{ Expt. } 1}=\frac{\left[\right. 0 . 012 \left]\right.^{x} \left[\right. 0 . 070 \left]\right.^{y}}{\left[\right. 0 . 012 \left]\right.^{x} \left[\right. 0 . 035 \left]\right.^{y}}=\frac{0 . 80}{0 . 10}$
$2^{y}=8\Rightarrow y=3$
$\frac{\text{ Expt. } 3}{\text{ Expt. } 1}=\frac{\left[\right. 0 . 024 \left]\right.^{x} \left[\right. 0 . 035 \left]\right.^{3}}{\left[\right. 0 . 012 \left]\right.^{x} \left[\right. 0 . 035 \left]\right.^{3}}=\frac{0 . 10}{0 . 10}$
$2^{x}=1\Rightarrow x=0$
Rate $=k\left[\right.A\left]\right.^{0}\left[\right.B\left]\right.^{3}$ .