Dimension of work $(W)=$ force $\times$ distance
$=\left[ MLT ^{-2}\right][ L ]=\left[ ML ^{2} T ^{-2}\right]$,
power $(P)=\frac{\text { work }}{\text { time }}=\frac{\left[ ML ^{2} T ^{-2}\right]}{[ T ]}=\left[ ML ^{2} T ^{3}\right] ;$ pressure
$(p)=\frac{\text { force }}{\text { area }}=\frac{\left[ ML ^{2} T ^{-2}\right]}{\left[ L ^{2}\right]}=\left[ ML ^{-1} T ^{-2}\right]$
and impulse $=$ force$\times$ time $=\left[ MLT ^{-2}\right][ T ]=\left[ MLT ^{-1}\right] .$
Therefore power has the same dimension as given in the question.